
Example: Viterbi algorithm

This handout illustrates a specific example of the Viterbi algorithm with the purpose of unifying
the concepts introduced in the application report, “Viterbi Decoding Techniques in the
TMS320C54x Family”.

The convolution coder is often used in digital transmission systems where the signal to noise ratio
is very low rendering the received signal error prone. The convolution coder achieves error free
transmission by adding enough redundancy to the source symbols. The choice of the convolu-
tional code is application dependent and varies with the frequency characteristics of the transmis-
sion medium as well as the desired transmission rate.

The Viterbi algorithm is a method commonly used for decoding bit streams encoded by convolu-
tion coders. The details of a particular decoder algorithm depends on the encoder. The Viterbi
algorithm is not a single algorithm that can be used to decode coded bit streams of any convolu-
tion coder.

The system chosen to illustrate the encoding and Viterbi decoding process is a 4-state optimal rate
1/2 convolutional code. A block diagram of this convolution encoder is show in Figure 1. is
the input and and are the encoded outputs. The rate of the convolution coder is
defined as the number of input bits to output bits. This system has 1 input and 2 outputs thereby
resulting in a coding rate of 1/2. The number of states of a convolution coder is determined by its
number of delay units. There are 2 delay units in this system and therefore, there are
states. For a system with k delay units, there are states.

FIGURE 1. Block diagram of convolutional encoder

The system block diagram can be expressed with the following equations.

The state diagram of this system is depicted in Figure 2. The states are defined as x(n-1),x(n-2)
pairs and the state transitions are defined as / . The states are indicative of sys-
tem memory. The state transitions gives you the path and the outputs associated with a given
input. Since a state transition is associated with each possible input, the number of state transi-
tions depends on the number of possible inputs. If there are inputs, then there will be state
transitions. The total number of state transitions at a point in time is the product of the number of

x n()
G0 n() G1 n()

22 4=
2k

D

+
D

+

+ G (n)1

G (n)0

x(n-1)

x(n)
x(n-2)

G0 n() x n() x n 1–() x n 2–()+ +=

G1 n() x n() x n 2–()+=

G0 n() G1 n(), x n()

m 2m

state transitions and the number of states, .

FIGURE 2. State diagram.

The state diagram offers a complete description of the system. However, it shows only the instan-
taneous transitions. It does not illustrate how the states change in time. To include time in state
transitions, a trellis diagram is used (Figure 3). Each node in the trellis diagram denotes a state at
a point in time. The branches connecting the nodes denote the state transitions. Notice that the
inputs are not labeled on the state transitions. They are implied since the input, , is included
in the destination states, . Another thing to note is that the state transitions are fixed
by the definition of the source, , and the destination states. The state transitions
are independent of the system equations. This a consequence of including the input, , in the
state definition. In certain systems, definition of the states may be more complicated and may
require special considerations. Explanation of such systems (such as the radix 4 trellis) is outside
the scope of this example.

FIGURE 3. Trellis diagrams

There are two trellis diagrams shown in Figure 3. They differ only in the way the destination
states are ordered. The purpose for reordering is to obtain higher computational efficiency. The
reordered trellis is partitioned into groups of states and state transitions that are isolated from
other such groups. This allows realizable, specialized hardware to be designed that is dedicated to
compute parameters associated with the particular group. The structure of the groups shown in

2m k+

11

1000

01

G (n),G (n)/x(n)10

11/1

01/0

11/0
00/1

10/0

01/1

10/1

00/0

x(n-1),x(n-2)

x n()
x n() x n 1–(),

x n 1–() x n 2–(),
x n()

01

11

01
10

11

10

x(n-1),x(n-2)

0000

01

10

11

G0,G1 x(n),x(n-1)x(n-1),x(n-2)

00

00

11

01

11
00

10

Reordered Trellis

01

00

01

1110 11

x(n),x(n-1)

10

G0,G1

01 10

00

Origional Trellis

00

01

10

11

Figure 3 is called the “butterfly” due to the physical resemblance. It is also referred to as the radix-
2 trellis structure since each group contains 2 source and 2 destination states. The TMS320C54x
DSP’s has specialized hardware that is dedicated to compute parameters associated with a butter-
fly. Note, again, that the structure of the reordered trellis is fixed depending on how the states are
defined. Not all trellis diagrams can be reordered into butterflies. Fortunately, a number of com-
monly used convolution coders have this nice property.

An important feature of this convolution code is that in each butterfly, there are only two (out of
four possible) distinct outputs: 00 and 11; or 01 and 10. Notice that the hamming distance of each
output pairs is 2. This feature is available to a very small subset of all possible convolution codes.
The usefulness of the this feature will be apparent later on when Viterbi decoding is described.

Figure 4 illustrates the entire process of encoding an input pattern to quantizing the received sig-
nal to decoding the quantized signal. The sample input pattern used is 1011010100. For the pur-
pose of this example, this input pattern is sufficiently long. In practice, for proper error correction,
the input pattern need to be longer than approximately 10 times the number of delay units plus 1,
i.e. . is often referred to as the constraint length. For
this example, k=2 which implies 30 input symbols need to be received before decoding to
improve the bit error rate.

The first trellis diagram in Figure 4 illustrates the state transitions associated with each input. This
trellis diagram is used here to illustrate how the decoder operates. Use Figure 3 to verify the state
transitions and the encoder outputs. The encoder outputs do not have to be generated using the
trellis diagram. They can be generated using the system equations directly.

The encoded outputs are transmitted as signed antipodal analog signals (i.e. 0 is transmitted with
a positive voltage and 1 is transmitted with a negative voltage). They are received at the decoder
and quantized with a 3-bit quantizer. The quantized number is represented in 2’s complement giv-
ing it a range of -4 to 3. The process of quantizing a binary analog signal with a multi-bit quan-
tizer is called soft decision. In contrast, hard decision quantizes the binary analog signal using a 1-
bit quantizer (i.e. quantized signal is either 0 or 1). Soft decision offers better performance results
since it provides a better estimate of the noise (i.e. less quantization noise is introduced). In most
circumstances, the noise is strong enough just to tip the signal over the decision boundary. If hard
decision is used, a significant amount of quantization noise will be introduced. The quantized soft
decision values are used to calculate the parameters for the Viterbi decoder.

Up to this point, no Viterbi decoding has been performed. Viterbi decoding begins after a certain
number of encoded symbols have been received. This length, again, is usually longer than

 and is application dependent. In this example, 20 encoded symbols are received before
being decoded. In some applications, Viterbi decoding is operated on a frame of received symbols
and is independent of the neighboring frames. Is is also possible to perform Viterbi decoding on a
sliding window in which a block of decoded bits at the beginning of the window is error free, and
the windows will have to overlap. With frame by frame decoding, a number of trailing zeros
equalling to the number of states is added. This forces the last state of the frame to be zero provid-
ing a starting point for traceback. With sliding window decoding, the starting point for traceback
is the state with the optimal accumulated metric. This starting state may be erroneous. However,
the traceback path will converge to the correct states before reaching the block of error free bits.

length of input pattern 10 k 1+()= k 1+()

10 k 1+()

FIGURE 4. Example of convolutional encoding and Viterbi decoding

01 1 1 0 1 0 1

11 10 00 01 01 00 10 00 10 11

00

01

10

11

11

10 00

01

01

00 10 00 10

11

00

01

10

11

107

114

100

108

100

120

107

127

115

132

122

128

124

136

120

128

142

128

130

142

144

140

137

139

141

146

151

130

132

138

113109

114

100

94

86

1

1

93100

0

0

0

1

7

-7 -7

1

7

-7

0

-1

1

1
-4

2

-2

6

2

2

-1

7

1

5

1

-5

-4

4

0

0

-6

4

5

-1

-5

-7

7

-6

6

0

158

1

00

01

10

11

0

0

1

0

0

0

1

0

0

1 1

0

0

0

1

0

0

1

0 0 0 0

0

1

1

1

0

1

1

1

1

1

1

0

1

1

0

1

1

1

-7 -1 6 -1 -1 4 0 4 -7-1

7 1 -6 1 1 -4 0 -4 71
-1 7 0 -7 -5 -2 6 -2 -15
1 -7 0 7 5 2 -6 2 1-5

00

01

10

11

-4,-4 -4,3 3,3 3,-4 3,-4 3,3 -4,3 3,3 -4,3 -4,-4

2.1,-2.5 2.6,1.3 -2.5,2.8 2.7,1.4 -3,2.1 -3.1,-4-3.4,-3.8 -3.6,2.7 2.9,2.5 2.7,-3.6

1 10987654320

1 1 00 1 1 0 1 0 0

Soft decision
(ideal)

Soft decision
(noisy)

Soft decision
(noise quantized)

Encoded output
bit pairs

State metrics

State transitions

Decoder output

Branch metrics

Input
Time

-3,-4 -4,3 3,3 3,-4 2,-3 3,1 3,1-3,3 -3,2 -3,-4

Sample input pattern: 1011010100

Viterbi decoding can be broken down into two major operations, metric update and traceback. In
metric update, two things are done in every symbol interval (1 symbol = 1 input bit = 2 encoded
bits): the accumulated (state) metric is calculated for each state and the optimal incoming path
associated with each state is determined. Traceback uses this information to derive an optimal
path through the trellis. Referring to the second trellis in Figure 4, notice that a state at any time
instance has exactly one incoming path but the number of outgoing paths may vary. This results in
a unique path tracing backward.

What are state metrics and how are the optimal incoming paths determined? To understand the
metrics used in Viterbi decoding, consider the received encoded bit pairs, . Sup-
pose 11 is transmitted, we would expect 11 to be received with a soft decision pair of (-4,-4).
However, channel noise may corrupt the transmitted signal such that the soft decision pair may be
(-0.4,-3.3) resulting in a quantized value of (0,-3) (see Figure 5). Without knowing anything about
the encoded bit stream, the detector would decide that (3,-4) or 01 is transmitted which results in a
bit error. This is called symbol by symbol detection.

FIGURE 5. Signal constellation for symbol by symbol detection

The Viterbi algorithm, on the other hand, exploits the structure of the convolution code and makes
its decision based on previously received data (i.e. this is kept track of using the “states”). Refer-
ring back to Figure 3, observe that an encoded bit pair is associated with only 2 possible originat-
ing states, . For example, if 11 is transmitted, then the originating state must be
either state 00 or state 01 (see Figure 3). Suppose that the original state is known to be 00, then it
would be impossible for the detected encoded bit pairs to be 01. The Viterbi decoder would then
have to decide between the two possible encoded bit pairs, 00 or 11. This decision depends on
how far away the received bit pairs are from the two possible transmitted bit pairs (Figure 6). The
metric used to measure this is the Euclidean distance. It is also referred to as the local distance
calculation.

G0 n() G1 n(),()

0
G (n)

1
G (n)

decision
boundaries

(-4,-4)

(-4,3)

(3,-4)

(3,3)

x n 1–() x n 2–(),

local distance n i,() S j n() G j n()–[] 2 j encoded bits associated with a given input{ }∈,
all j
∑=

where n denotes the time instance and i denotes the path calculated for. The above equation can be
further simplified by observing the expansion:

and noting that and are constants in a given symbol period. These terms can

be ignored since we are concerned with finding the minimum local distance path. The following
measure will suffice for determining the local distance: Note that the -2 is taken out which implies

that instead of finding the path with the minimum local distance, we would look for the path with
the maximum .

FIGURE 6. Signal constellation for Viterbi decoding

Going back to Figure 4, the branch metrics can now be calculated using the above local distance
equation. As an example, the branch metrics for time 0 and 1 is calculated here. The received
quantized soft decision pair is (-3,-4). The branch metric corresponding to

 is equal to . For , it is
. For , it is . And for

, it is . Notice that the ‘s used in the local
distance calculation are +1 and -1, rather than +3 and -4 respectively. There are three reasons.
First, using unities makes computation very simple. The branch metrics can be calculated by add-

local distance n i,() S j
2 n() 2S j n()G j n() G j

2 n()+–[]
all j
∑=

S j
2 n()

all j
∑ G j

2 n()
all j
∑

local distance1 n i,() S j n()G j n()
all j
∑=

local distance1 n i,()

0
G (n)

1
G (n)

0
G (n)

1
G (n)

Decision boundaries

(-4,3)

(3,-4)(-4,-4)

(3,3)

Originating states: 10, 11Originating states: 00, 01

G0 n() G1 n(),() 0 0,()= 3 1()– 4 1()– 7–= G0 n() G1 n(),() 0 1,()=
3 1()– 4 1–()– 1= G0 n() G1 n(),() 1 0,()= 3 1–()– 4 1()– 1–=

G0 n() G1 n(),() 1 1,()= 3 1–()– 4 1–()– 7= G j n()

ing and subtracting the soft decision values. Second, 3 and -4 can be scaled to approximately 1
and -1 respectively. As mentioned in the derivation of , constant scaling can be
ignored in determining the maxima and the minima. Finally, note that there are only two unique
metric magnitudes, 1 and 7. Therefore, to compute the branch metric, you only need to do 1 add,
1 subtract, and 2 negation.

Once the branch metrics are calculated, the state metrics and the best incoming paths for each des-
tination states can be determined. The state metrics at time 0 are initialized to 0 except for state
00, which takes on the value of 100. This value is arbitrarily chosen and is large enough so that the
other initial states cannot contribute to the best path. This basically forces the traceback to con-
verge on state 00 at time 0.

The state metrics are updated in two steps. First, for each of the two incoming paths, the corre-
sponding branch metric is added to the state metric of the originating state. The two sums are
compared and the larger one is stored as the new state metric and the corresponding path is stored
as the best path. Take state 10 at time instance 2 for example (Figure 4). The two paths coming in
to this state originates from states 00 and 01 (Figure 3). Looking at the second trellis, we see that
state 00 has a value of 93 and state 01 has a value of 1. The branch metric of the top path (connect-
ing state 00 at time 1 and state 10 at time 2) is 1. The branch metric of the bottom path (between
states 01 and 10) is -1. The top path gives a sum of and the bottom path give a sum
of . As a result, 94 is stored as the state metric for state 10 at time 2 and the top path
is stored as the best path in the transition buffer.

The transition buffer stores the best incoming path for each state. For a radix 2 trellis, only 1 bit is
needed to indicate the chosen path. A value of 0 indicates that the top incoming path of the given
state is chosen as the best path whereas a value of 1 indicates that the bottom path is chosen. The
transition bits for our example is illustrated in Figure 4 in the third trellis.

Traceback begins after completing the metric update of the last symbol in the frame. For frame by
frame Viterbi decoding, all that is needed by the traceback algorithm are the state transitions. The
starting state is state 00. For sliding window decoding, the starting state is the state with the larg-
est state metric. In our example, the starting state for both types of decoding is 00 since it has the
largest state metric, 158. Looking at the state transition for state 00, we see that the bottom path is
optimal (state transition = 1 implies bottom path). Two things now happen. First, the transition bit,
1, is sent to the decoder output. Second, the originating state, state 01, of this optimal path is
determined. This process is repeated until time 2, which corresponds to the first input bit transmit-
ted.

The decoded output is shown in Figure 4 in the last row. Notice that the order with which the
decoded output is generated is reversed, i.e. decoded output = 10101101 whereas the sample input
pattern is 10110101. Additional code need to be added to reverse the ordering of the decoded out-
put to exactly reconstruct the sample input.

local distance1

93 1+ 94=
1 1–()+ 0=

